Red Jaguar Mark 1: Back left fender

Red Jaguar Mark 1: Back left fender
where to get used cars
Image by Chris Devers
The owner of this car posted a comment describing it thus (with added links to photos of what’s being described):

Hey Guys, thanks for noticing my car! 1958 MK1 3.4 Auto. I did add spoked wheels as the pressed steel rims were warped and not safe. I could not find originals and I like the spoked better. The cut away spats are in fact original to the 3.4 model, the earlier 2.4 had the full spats. I am sure the MK2 spats do not fit this car. I have the chrome for the front and rear windscreens but I think the prior owner put the wrong rubber seals so at present cannot be installed. The doors/windows are completely original and not the same as the MK2. Thank you again, she has had much suspension and breaking work and is cruising around with ease.

Pasting then from Wikipedia: Jaguar Mark 1:

• • • • •

Manufacturer
Jaguar Cars

• Production
1955–1959
37,397 produced[1]

• Predecessor
Jaguar 1½ Litre saloon

• Successor
Jaguar Mark 2

Body style(s)
Saloon

Engine(s)
2483 cc XK I6
3442 cc XK I6

Transmission(s)
4-speed manual
4-speed manual + overdrive
3-speed automatic

Wheelbase
107.5 in (2731 mm)[2]

• Length
181 in (4597 mm)[2]

• Width
66.75 in (1695 mm)[2]

• Height
57.25 in (1454 mm)[2]

The Jaguar Mark 1 was a saloon car produced by Jaguar between 1955 and 1959. Referred to in contemporary company documentation as the Jaguar 2.4-litre and Jaguar 3.4-litre, the word "Saloon" was often added. The designation "Mark 1" was included retroactively upon its replacement by the Mark 2. The 2.4-litre was the company’s first small saloon since the demise of its 1½ Litre cars in 1949, and was an immediate success, easily outselling the larger Jaguar saloons.

Contents

1 History
2 Performance
3 Racing
4 References
5 Other sources
6 External links

History

In 1951 Jaguar relocated to their Browns Lane plant which provided not merely sufficient production capacity for their existing range, but enabled them to move into the middle weight executive sedan sector,[3] then occupied in the UK by cars such as the stately Humbers, the bulbous Standard Vanguard and the heavy Rover P4. Jaguar’s new 2.4 and 3.4 introduced a modern style and a new level of performance to this respectable company.

Although having a family resemblance to the larger Mark VII, the Mark I differed in many ways. Most importantly, it was the first Jaguar with unitary construction of body and chassis. The car’s independent front suspension featured double wishbones, coil springs, and an anti-roll bar. The front suspension subframe was mounted on the body by rubber mounts. The live rear axle was positively located by quarter elliptic leaf springs, trailing arms and a Panhard rod in a manner reminiscent of the Jaguar D-type, being a significant improvement over the other saloons and XK sports cars. The rear wheel track was some 4.5 in (114 mm) narrower than the front track and looked peculiar from behind, a feature that was blamed (probably incorrectly) for excessive understeer[1] at low speed. It was reported to be better balanced at higher speeds.

The interior was of similar design to the contemporary Jaguar saloons and sports cars, with most of the dials and switches being located on the central dashboard between the driver and passenger. This arrangement reduced the differences between LHD and RHD versions.

Although its profile was very different from that of previous Jaguars, the side window surrounds and opening rear ‘no draught ventilator’ (quarterlight) windows are reminiscent of Jaguar Mark IV saloons.

At launch the car had 11.125 in (283 mm) drum brakes but from the end of 1957 got the innovative (at the time) option of disc brakes on all four wheels.

Initially, the Mark 1 was offered with a 2.4 litre short-stroke version of the XK120’s twin-cam six-cylinder engine, rated at 112 bhp gross, but from 1957 the larger and heavier 3.4 litre 210 bhp unit already used in the Jaguar Mark VIII also became available, largely in response to pressure from US Jaguar dealers. Wire wheels became available. The 3.4 had a larger front grille, a stronger rear axle, and rear wheel covers (spats) were cut away to accommodate the wire wheels’ spinners. In Autumn 1957 a three speed Borg-Warner automatic transmission became available with either engine. From 1957 the 2.4 also got the larger grille. The car was available in Standard or Special Equipment versions with the former lacking rev counter, heater (available as an option), windscreen washers, fog lights and cigarette lighter. Both versions did however have leather upholstery and polished walnut trim. 19,992 of the 2.4 and 17,405 of the 3.4 litre versions were made.[1]

Performance

A 2.4-litre saloon with overdrive was tested by the British magazine The Motor in 1956. It was found to have a top speed of 101.5 mph (163.3 km/h) and could accelerate from 0-60 mph (97 km/h) in 14.4 seconds. A fuel consumption of 18.25 miles per imperial gallon (15.48 L/100 km; 15.20 mpg-US) was recorded. The test car cost £1532 including taxes. [2]

They went on to test a 3.4-litre automatic saloon in 1957. This car had a top speed of 119.8 mph (192.8 km/h), acceleration from 0-60 mph (97 km/h) in 11.2 seconds and a fuel consumption of 21.1 miles per imperial gallon (13.4 L/100 km; 17.6 mpg-US) was recorded. The test car cost £1864 including taxes of £622. [4]

A manual overdrive version of the 3.4-litre was tested by The Autocar in June 1958. Its 0-60 mph (97 km/h) time was 9.1 seconds, and 0-100 mph (160 km/h) in 26 seconds, little more than 1 second behind the contemporary XK150 with the same engine. [5]

Racing

Mark I 3.4-litre saloons competed successfully in many rallies, touring car, and saloon car races, notable drivers including Stirling Moss, Mike Hawthorn, Tommy Sopwith, and Roy Salvadori.[6]

References

• ^ a b c Robson, Graham (2006). A-Z British Cars 1945-1980. Devon, UK: Herridge & Sons. ISBN 0-9541063-9-3.
• ^ a b c d e "The Jaguar 2.4 litre". The Motor. July 25, 1956.
^ "The Lyons share – interview with WL". Motor: pages 18–21. date 19 February 1972.
^ "The Jaguar 3.4-litre". The Motor. April 10, 1957.
^ Skilleter, Paul & Whyte, Andrew: Jaguar Saloon Cars. Haynes (1980), ISBN 0-85429-263-2, page 234
^ Skilleter, Paul & Whyte, Andrew: Jaguar Saloon Cars. Haynes (1980), ISBN 0-85429-263-2

Other sources

Schrader, Halwart: Typenkompass Jaguar – Personenwagen seit 1931, Motorbuch-Verlag, Stuttgart (2001), ISBN 3-613-02106-4

Stertkamp, Heiner: Jaguar – die komplette Chronik von 1922 bis heute, 2. Auflage, Heel-Verlag, (2006) ISBN 3-89880-337-6

Skilleter, Paul & Whyte, Andrew: Jaguar Saloon Cars. Haynes (1980), ISBN 0-85429-263-2

External links

Volunteer maintained online registry where users can register and upload pictures.

2002-2005 Audi A4 – Sedan | Used Car Review | AutoTrader

The Audi A4 is acclaimed for its styling, performance and available all-wheel drive, but be wary of cars with the CVT transmission.

Compare cars, read reviews and find deals at http://www.autotrader.com/research/index.jsp?LNX=SOMEDYTB

SUBSCRIBE: http://bit.ly/18AY8zq

Connect with Autotrader:
AutoTrader.com: http://bit.ly/1j9WART
Facebook: http://on.fb.me/18aPlru
Twitter: http://bit.ly/1iguffh
Google+: http://bit.ly/1aY5Ola
Instagram: http://bit.ly/178kwms
Pinterest: http://bit.ly/1e8su12

About Autotrader:
Our mission at Autotrader is to be your ultimate online solution for buying and selling new, certified and used
cars. Not sure which type of car you want? That’s okay. http://Autotrader.com lets you research and compare
cars by searching for body type, mileage, price and numerous other criteria.

2002-2005 Audi A4 – Sedan | Used Car Review | AutoTrader
https://www.youtube.com/user/AutoTrader
Video Rating: / 5

8 Cheap Cars To Get Started Drifting!! ?

Subscribe to Viral Vehicles: http://bit.ly/2t6hVJ1

Credits below.

FotoSleuth – https://flic.kr/p/9bsD69
Chen Qing – https://flic.kr/p/fHokp
Sicnag – https://flic.kr/p/nUMjSW
Spanish Coches – https://flic.kr/p/aziCkL
Spanish Coches – https://flic.kr/p/aEXNFa
www.twin-loc.fr – https://flic.kr/p/p9v63E
peterolthof – https://flic.kr/p/UJyEer
RA_Photography – http://bit.ly/2oa96Nr
Dave_7 – https://flic.kr/p/Fen8ek
Ian Gulinao – https://flic.kr/p/LrrKWN
nakhon100 – https://flic.kr/p/8sPrp3
D – 15 photography – https://flic.kr/p/pXZf5R
ryan lovelace – https://flic.kr/p/dY3aY8
Sicnag – https://flic.kr/p/GLKeSL
Nick Ares – https://flic.kr/p/amRvmC
Alexander Nie – https://flic.kr/p/qqKd1T
Sicnag – https://flic.kr/p/nWJ93m
Darrin Brown – https://youtu.be/I9fim2aHYLY
Patrick Lien – https://flic.kr/p/6y7GhT
Eric Rayner – https://flic.kr/p/hM1qn5
Eric Rayner – https://flic.kr/p/hM2FdJ
Richard Simons – https://youtu.be/N06JIU-w7Jg
citro25bye – https://flic.kr/p/GhZNFV
citro25bye – https://flic.kr/p/219KzC9
RL GNZLZ – https://flic.kr/p/nq7LvK
Jeff – https://flic.kr/p/8WAnp6

Music
Track: LAKEY INSPIRED – Island
Link: https://soundcloud.com/lakeyinspired/island
Video Rating: / 5

Toyota Hiace Van – Cars 4 U, FZCO Dubai Auction February 17, 2016

https://janjapan.com/

Watch Cars 4 U, FZCO having an auction for used Toyota Hiace Van in Al Aweer Auto Market, DUCAMZ, Dubai.

For more information & thousands of used cars, call +971 522889861 or visit our website janjapan.com

Address:
Showroom # 390, Al Aweer Auto Market,
DUCAMZ, Ras Al Khor, Dubai, UAE
Phone: +971 522889861
Fax: +97143204006

Subscribe to our channel:
https://www.youtube.com/c/JanJapanMotorsGlobal/

Related Videos from Dubai Auction:


Video Rating: / 5

Infrared HDR Garden of the Gods Colorado

Infrared HDR Garden of the Gods Colorado
autos used for sale
Image by Brokentaco
IR converted Canon Rebel XTi. AEB +/-2 total of 3 exposures processed with Photomatix.

High Dynamic Range (HDR)

High-dynamic-range imaging (HDRI) is a high dynamic range (HDR) technique used in imaging and photography to reproduce a greater dynamic range of luminosity than is possible with standard digital imaging or photographic techniques. The aim is to present a similar range of luminance to that experienced through the human visual system. The human eye, through adaptation of the iris and other methods, adjusts constantly to adapt to a broad range of luminance present in the environment. The brain continuously interprets this information so that a viewer can see in a wide range of light conditions.

HDR images can represent a greater range of luminance levels than can be achieved using more ‘traditional’ methods, such as many real-world scenes containing very bright, direct sunlight to extreme shade, or very faint nebulae. This is often achieved by capturing and then combining several different, narrower range, exposures of the same subject matter. Non-HDR cameras take photographs with a limited exposure range, referred to as LDR, resulting in the loss of detail in highlights or shadows.

The two primary types of HDR images are computer renderings and images resulting from merging multiple low-dynamic-range (LDR) or standard-dynamic-range (SDR) photographs. HDR images can also be acquired using special image sensors, such as an oversampled binary image sensor.

Due to the limitations of printing and display contrast, the extended luminosity range of an HDR image has to be compressed to be made visible. The method of rendering an HDR image to a standard monitor or printing device is called tone mapping. This method reduces the overall contrast of an HDR image to facilitate display on devices or printouts with lower dynamic range, and can be applied to produce images with preserved local contrast (or exaggerated for artistic effect).

In photography, dynamic range is measured in exposure value (EV) differences (known as stops). An increase of one EV, or ‘one stop’, represents a doubling of the amount of light. Conversely, a decrease of one EV represents a halving of the amount of light. Therefore, revealing detail in the darkest of shadows requires high exposures, while preserving detail in very bright situations requires very low exposures. Most cameras cannot provide this range of exposure values within a single exposure, due to their low dynamic range. High-dynamic-range photographs are generally achieved by capturing multiple standard-exposure images, often using exposure bracketing, and then later merging them into a single HDR image, usually within a photo manipulation program). Digital images are often encoded in a camera’s raw image format, because 8-bit JPEG encoding does not offer a wide enough range of values to allow fine transitions (and regarding HDR, later introduces undesirable effects due to lossy compression).

Any camera that allows manual exposure control can make images for HDR work, although one equipped with auto exposure bracketing (AEB) is far better suited. Images from film cameras are less suitable as they often must first be digitized, so that they can later be processed using software HDR methods.

In most imaging devices, the degree of exposure to light applied to the active element (be it film or CCD) can be altered in one of two ways: by either increasing/decreasing the size of the aperture or by increasing/decreasing the time of each exposure. Exposure variation in an HDR set is only done by altering the exposure time and not the aperture size; this is because altering the aperture size also affects the depth of field and so the resultant multiple images would be quite different, preventing their final combination into a single HDR image.

An important limitation for HDR photography is that any movement between successive images will impede or prevent success in combining them afterwards. Also, as one must create several images (often three or five and sometimes more) to obtain the desired luminance range, such a full ‘set’ of images takes extra time. HDR photographers have developed calculation methods and techniques to partially overcome these problems, but the use of a sturdy tripod is, at least, advised.

Some cameras have an auto exposure bracketing (AEB) feature with a far greater dynamic range than others, from the 3 EV of the Canon EOS 40D, to the 18 EV of the Canon EOS-1D Mark II. As the popularity of this imaging method grows, several camera manufactures are now offering built-in HDR features. For example, the Pentax K-7 DSLR has an HDR mode that captures an HDR image and outputs (only) a tone mapped JPEG file. The Canon PowerShot G12, Canon PowerShot S95 and Canon PowerShot S100 offer similar features in a smaller format.. Nikon’s approach is called ‘Active D-Lighting’ which applies exposure compensation and tone mapping to the image as it comes from the sensor, with the accent being on retaing a realistic effect . Some smartphones provide HDR modes, and most mobile platforms have apps that provide HDR picture taking.

Camera characteristics such as gamma curves, sensor resolution, noise, photometric calibration and color calibration affect resulting high-dynamic-range images.

Color film negatives and slides consist of multiple film layers that respond to light differently. As a consequence, transparent originals (especially positive slides) feature a very high dynamic range

Tone mapping
Tone mapping reduces the dynamic range, or contrast ratio, of an entire image while retaining localized contrast. Although it is a distinct operation, tone mapping is often applied to HDRI files by the same software package.

Several software applications are available on the PC, Mac and Linux platforms for producing HDR files and tone mapped images. Notable titles include

Adobe Photoshop
Aurora HDR
Dynamic Photo HDR
HDR Efex Pro
HDR PhotoStudio
Luminance HDR
MagicRaw
Oloneo PhotoEngine
Photomatix Pro
PTGui

Information stored in high-dynamic-range images typically corresponds to the physical values of luminance or radiance that can be observed in the real world. This is different from traditional digital images, which represent colors as they should appear on a monitor or a paper print. Therefore, HDR image formats are often called scene-referred, in contrast to traditional digital images, which are device-referred or output-referred. Furthermore, traditional images are usually encoded for the human visual system (maximizing the visual information stored in the fixed number of bits), which is usually called gamma encoding or gamma correction. The values stored for HDR images are often gamma compressed (power law) or logarithmically encoded, or floating-point linear values, since fixed-point linear encodings are increasingly inefficient over higher dynamic ranges.

HDR images often don’t use fixed ranges per color channel—other than traditional images—to represent many more colors over a much wider dynamic range. For that purpose, they don’t use integer values to represent the single color channels (e.g., 0-255 in an 8 bit per pixel interval for red, green and blue) but instead use a floating point representation. Common are 16-bit (half precision) or 32-bit floating point numbers to represent HDR pixels. However, when the appropriate transfer function is used, HDR pixels for some applications can be represented with a color depth that has as few as 10–12 bits for luminance and 8 bits for chrominance without introducing any visible quantization artifacts.

History of HDR photography
The idea of using several exposures to adequately reproduce a too-extreme range of luminance was pioneered as early as the 1850s by Gustave Le Gray to render seascapes showing both the sky and the sea. Such rendering was impossible at the time using standard methods, as the luminosity range was too extreme. Le Gray used one negative for the sky, and another one with a longer exposure for the sea, and combined the two into one picture in positive.

Mid 20th century
Manual tone mapping was accomplished by dodging and burning – selectively increasing or decreasing the exposure of regions of the photograph to yield better tonality reproduction. This was effective because the dynamic range of the negative is significantly higher than would be available on the finished positive paper print when that is exposed via the negative in a uniform manner. An excellent example is the photograph Schweitzer at the Lamp by W. Eugene Smith, from his 1954 photo essay A Man of Mercy on Dr. Albert Schweitzer and his humanitarian work in French Equatorial Africa. The image took 5 days to reproduce the tonal range of the scene, which ranges from a bright lamp (relative to the scene) to a dark shadow.

Ansel Adams elevated dodging and burning to an art form. Many of his famous prints were manipulated in the darkroom with these two methods. Adams wrote a comprehensive book on producing prints called The Print, which prominently features dodging and burning, in the context of his Zone System.

With the advent of color photography, tone mapping in the darkroom was no longer possible due to the specific timing needed during the developing process of color film. Photographers looked to film manufacturers to design new film stocks with improved response, or continued to shoot in black and white to use tone mapping methods.

Color film capable of directly recording high-dynamic-range images was developed by Charles Wyckoff and EG&G "in the course of a contract with the Department of the Air Force". This XR film had three emulsion layers, an upper layer having an ASA speed rating of 400, a middle layer with an intermediate rating, and a lower layer with an ASA rating of 0.004. The film was processed in a manner similar to color films, and each layer produced a different color. The dynamic range of this extended range film has been estimated as 1:108. It has been used to photograph nuclear explosions, for astronomical photography, for spectrographic research, and for medical imaging. Wyckoff’s detailed pictures of nuclear explosions appeared on the cover of Life magazine in the mid-1950s.

Late 20th century
Georges Cornuéjols and licensees of his patents (Brdi, Hymatom) introduced the principle of HDR video image, in 1986, by interposing a matricial LCD screen in front of the camera’s image sensor, increasing the sensors dynamic by five stops. The concept of neighborhood tone mapping was applied to video cameras by a group from the Technion in Israel led by Dr. Oliver Hilsenrath and Prof. Y.Y.Zeevi who filed for a patent on this concept in 1988.

In February and April 1990, Georges Cornuéjols introduced the first real-time HDR camera that combined two images captured by a sensor3435 or simultaneously3637 by two sensors of the camera. This process is known as bracketing used for a video stream.

In 1991, the first commercial video camera was introduced that performed real-time capturing of multiple images with different exposures, and producing an HDR video image, by Hymatom, licensee of Georges Cornuéjols.

Also in 1991, Georges Cornuéjols introduced the HDR+ image principle by non-linear accumulation of images to increase the sensitivity of the camera: for low-light environments, several successive images are accumulated, thus increasing the signal to noise ratio.

In 1993, another commercial medical camera producing an HDR video image, by the Technion.

Modern HDR imaging uses a completely different approach, based on making a high-dynamic-range luminance or light map using only global image operations (across the entire image), and then tone mapping the result. Global HDR was first introduced in 19931 resulting in a mathematical theory of differently exposed pictures of the same subject matter that was published in 1995 by Steve Mann and Rosalind Picard.

On October 28, 1998, Ben Sarao created one of the first nighttime HDR+G (High Dynamic Range + Graphic image)of STS-95 on the launch pad at NASA’s Kennedy Space Center. It consisted of four film images of the shuttle at night that were digitally composited with additional digital graphic elements. The image was first exhibited at NASA Headquarters Great Hall, Washington DC in 1999 and then published in Hasselblad Forum, Issue 3 1993, Volume 35 ISSN 0282-5449.

The advent of consumer digital cameras produced a new demand for HDR imaging to improve the light response of digital camera sensors, which had a much smaller dynamic range than film. Steve Mann developed and patented the global-HDR method for producing digital images having extended dynamic range at the MIT Media Laboratory. Mann’s method involved a two-step procedure: (1) generate one floating point image array by global-only image operations (operations that affect all pixels identically, without regard to their local neighborhoods); and then (2) convert this image array, using local neighborhood processing (tone-remapping, etc.), into an HDR image. The image array generated by the first step of Mann’s process is called a lightspace image, lightspace picture, or radiance map. Another benefit of global-HDR imaging is that it provides access to the intermediate light or radiance map, which has been used for computer vision, and other image processing operations.

21st century
In 2005, Adobe Systems introduced several new features in Photoshop CS2 including Merge to HDR, 32 bit floating point image support, and HDR tone mapping.

On June 30, 2016, Microsoft added support for the digital compositing of HDR images to Windows 10 using the Universal Windows Platform.

HDR sensors
Modern CMOS image sensors can often capture a high dynamic range from a single exposure. The wide dynamic range of the captured image is non-linearly compressed into a smaller dynamic range electronic representation. However, with proper processing, the information from a single exposure can be used to create an HDR image.

Such HDR imaging is used in extreme dynamic range applications like welding or automotive work. Some other cameras designed for use in security applications can automatically provide two or more images for each frame, with changing exposure. For example, a sensor for 30fps video will give out 60fps with the odd frames at a short exposure time and the even frames at a longer exposure time. Some of the sensor may even combine the two images on-chip so that a wider dynamic range without in-pixel compression is directly available to the user for display or processing.

en.wikipedia.org/wiki/High-dynamic-range_imaging

Infrared Photography

In infrared photography, the film or image sensor used is sensitive to infrared light. The part of the spectrum used is referred to as near-infrared to distinguish it from far-infrared, which is the domain of thermal imaging. Wavelengths used for photography range from about 700 nm to about 900 nm. Film is usually sensitive to visible light too, so an infrared-passing filter is used; this lets infrared (IR) light pass through to the camera, but blocks all or most of the visible light spectrum (the filter thus looks black or deep red). ("Infrared filter" may refer either to this type of filter or to one that blocks infrared but passes other wavelengths.)

When these filters are used together with infrared-sensitive film or sensors, "in-camera effects" can be obtained; false-color or black-and-white images with a dreamlike or sometimes lurid appearance known as the "Wood Effect," an effect mainly caused by foliage (such as tree leaves and grass) strongly reflecting in the same way visible light is reflected from snow. There is a small contribution from chlorophyll fluorescence, but this is marginal and is not the real cause of the brightness seen in infrared photographs. The effect is named after the infrared photography pioneer Robert W. Wood, and not after the material wood, which does not strongly reflect infrared.

The other attributes of infrared photographs include very dark skies and penetration of atmospheric haze, caused by reduced Rayleigh scattering and Mie scattering, respectively, compared to visible light. The dark skies, in turn, result in less infrared light in shadows and dark reflections of those skies from water, and clouds will stand out strongly. These wavelengths also penetrate a few millimeters into skin and give a milky look to portraits, although eyes often look black.

Until the early 20th century, infrared photography was not possible because silver halide emulsions are not sensitive to longer wavelengths than that of blue light (and to a lesser extent, green light) without the addition of a dye to act as a color sensitizer. The first infrared photographs (as distinct from spectrographs) to be published appeared in the February 1910 edition of The Century Magazine and in the October 1910 edition of the Royal Photographic Society Journal to illustrate papers by Robert W. Wood, who discovered the unusual effects that now bear his name. The RPS co-ordinated events to celebrate the centenary of this event in 2010. Wood’s photographs were taken on experimental film that required very long exposures; thus, most of his work focused on landscapes. A further set of infrared landscapes taken by Wood in Italy in 1911 used plates provided for him by CEK Mees at Wratten & Wainwright. Mees also took a few infrared photographs in Portugal in 1910, which are now in the Kodak archives.

Infrared-sensitive photographic plates were developed in the United States during World War I for spectroscopic analysis, and infrared sensitizing dyes were investigated for improved haze penetration in aerial photography. After 1930, new emulsions from Kodak and other manufacturers became useful to infrared astronomy.

Infrared photography became popular with photography enthusiasts in the 1930s when suitable film was introduced commercially. The Times regularly published landscape and aerial photographs taken by their staff photographers using Ilford infrared film. By 1937 33 kinds of infrared film were available from five manufacturers including Agfa, Kodak and Ilford. Infrared movie film was also available and was used to create day-for-night effects in motion pictures, a notable example being the pseudo-night aerial sequences in the James Cagney/Bette Davis movie The Bride Came COD.

False-color infrared photography became widely practiced with the introduction of Kodak Ektachrome Infrared Aero Film and Ektachrome Infrared EIR. The first version of this, known as Kodacolor Aero-Reversal-Film, was developed by Clark and others at the Kodak for camouflage detection in the 1940s. The film became more widely available in 35mm form in the 1960s but KODAK AEROCHROME III Infrared Film 1443 has been discontinued.

Infrared photography became popular with a number of 1960s recording artists, because of the unusual results; Jimi Hendrix, Donovan, Frank and a slow shutter speed without focus compensation, however wider apertures like f/2.0 can produce sharp photos only if the lens is meticulously refocused to the infrared index mark, and only if this index mark is the correct one for the filter and film in use. However, it should be noted that diffraction effects inside a camera are greater at infrared wavelengths so that stopping down the lens too far may actually reduce sharpness.

Most apochromatic (‘APO’) lenses do not have an Infrared index mark and do not need to be refocused for the infrared spectrum because they are already optically corrected into the near-infrared spectrum. Catadioptric lenses do not often require this adjustment because their mirror containing elements do not suffer from chromatic aberration and so the overall aberration is comparably less. Catadioptric lenses do, of course, still contain lenses, and these lenses do still have a dispersive property.

Infrared black-and-white films require special development times but development is usually achieved with standard black-and-white film developers and chemicals (like D-76). Kodak HIE film has a polyester film base that is very stable but extremely easy to scratch, therefore special care must be used in the handling of Kodak HIE throughout the development and printing/scanning process to avoid damage to the film. The Kodak HIE film was sensitive to 900 nm.

As of November 2, 2007, "KODAK is preannouncing the discontinuance" of HIE Infrared 35 mm film stating the reasons that, "Demand for these products has been declining significantly in recent years, and it is no longer practical to continue to manufacture given the low volume, the age of the product formulations and the complexity of the processes involved." At the time of this notice, HIE Infrared 135-36 was available at a street price of around .00 a roll at US mail order outlets.

Arguably the greatest obstacle to infrared film photography has been the increasing difficulty of obtaining infrared-sensitive film. However, despite the discontinuance of HIE, other newer infrared sensitive emulsions from EFKE, ROLLEI, and ILFORD are still available, but these formulations have differing sensitivity and specifications from the venerable KODAK HIE that has been around for at least two decades. Some of these infrared films are available in 120 and larger formats as well as 35 mm, which adds flexibility to their application. With the discontinuance of Kodak HIE, Efke’s IR820 film has become the only IR film on the marketneeds update with good sensitivity beyond 750 nm, the Rollei film does extend beyond 750 nm but IR sensitivity falls off very rapidly.

Color infrared transparency films have three sensitized layers that, because of the way the dyes are coupled to these layers, reproduce infrared as red, red as green, and green as blue. All three layers are sensitive to blue so the film must be used with a yellow filter, since this will block blue light but allow the remaining colors to reach the film. The health of foliage can be determined from the relative strengths of green and infrared light reflected; this shows in color infrared as a shift from red (healthy) towards magenta (unhealthy). Early color infrared films were developed in the older E-4 process, but Kodak later manufactured a color transparency film that could be developed in standard E-6 chemistry, although more accurate results were obtained by developing using the AR-5 process. In general, color infrared does not need to be refocused to the infrared index mark on the lens.

In 2007 Kodak announced that production of the 35 mm version of their color infrared film (Ektachrome Professional Infrared/EIR) would cease as there was insufficient demand. Since 2011, all formats of color infrared film have been discontinued. Specifically, Aerochrome 1443 and SO-734.

There is no currently available digital camera that will produce the same results as Kodak color infrared film although the equivalent images can be produced by taking two exposures, one infrared and the other full-color, and combining in post-production. The color images produced by digital still cameras using infrared-pass filters are not equivalent to those produced on color infrared film. The colors result from varying amounts of infrared passing through the color filters on the photo sites, further amended by the Bayer filtering. While this makes such images unsuitable for the kind of applications for which the film was used, such as remote sensing of plant health, the resulting color tonality has proved popular artistically.

Color digital infrared, as part of full spectrum photography is gaining popularity. The ease of creating a softly colored photo with infrared characteristics has found interest among hobbyists and professionals.

In 2008, Los Angeles photographer, Dean Bennici started cutting and hand rolling Aerochrome color Infrared film. All Aerochrome medium and large format which exists today came directly from his lab. The trend in infrared photography continues to gain momentum with the success of photographer Richard Mosse and multiple users all around the world.

Digital camera sensors are inherently sensitive to infrared light, which would interfere with the normal photography by confusing the autofocus calculations or softening the image (because infrared light is focused differently from visible light), or oversaturating the red channel. Also, some clothing is transparent in the infrared, leading to unintended (at least to the manufacturer) uses of video cameras. Thus, to improve image quality and protect privacy, many digital cameras employ infrared blockers. Depending on the subject matter, infrared photography may not be practical with these cameras because the exposure times become overly long, often in the range of 30 seconds, creating noise and motion blur in the final image. However, for some subject matter the long exposure does not matter or the motion blur effects actually add to the image. Some lenses will also show a ‘hot spot’ in the centre of the image as their coatings are optimised for visible light and not for IR.

An alternative method of DSLR infrared photography is to remove the infrared blocker in front of the sensor and replace it with a filter that removes visible light. This filter is behind the mirror, so the camera can be used normally – handheld, normal shutter speeds, normal composition through the viewfinder, and focus, all work like a normal camera. Metering works but is not always accurate because of the difference between visible and infrared refraction. When the IR blocker is removed, many lenses which did display a hotspot cease to do so, and become perfectly usable for infrared photography. Additionally, because the red, green and blue micro-filters remain and have transmissions not only in their respective color but also in the infrared, enhanced infrared color may be recorded.

Since the Bayer filters in most digital cameras absorb a significant fraction of the infrared light, these cameras are sometimes not very sensitive as infrared cameras and can sometimes produce false colors in the images. An alternative approach is to use a Foveon X3 sensor, which does not have absorptive filters on it; the Sigma SD10 DSLR has a removable IR blocking filter and dust protector, which can be simply omitted or replaced by a deep red or complete visible light blocking filter. The Sigma SD14 has an IR/UV blocking filter that can be removed/installed without tools. The result is a very sensitive digital IR camera.

While it is common to use a filter that blocks almost all visible light, the wavelength sensitivity of a digital camera without internal infrared blocking is such that a variety of artistic results can be obtained with more conventional filtration. For example, a very dark neutral density filter can be used (such as the Hoya ND400) which passes a very small amount of visible light compared to the near-infrared it allows through. Wider filtration permits an SLR viewfinder to be used and also passes more varied color information to the sensor without necessarily reducing the Wood effect. Wider filtration is however likely to reduce other infrared artefacts such as haze penetration and darkened skies. This technique mirrors the methods used by infrared film photographers where black-and-white infrared film was often used with a deep red filter rather than a visually opaque one.

Another common technique with near-infrared filters is to swap blue and red channels in software (e.g. photoshop) which retains much of the characteristic ‘white foliage’ while rendering skies a glorious blue.

Several Sony cameras had the so-called Night Shot facility, which physically moves the blocking filter away from the light path, which makes the cameras very sensitive to infrared light. Soon after its development, this facility was ‘restricted’ by Sony to make it difficult for people to take photos that saw through clothing. To do this the iris is opened fully and exposure duration is limited to long times of more than 1/30 second or so. It is possible to shoot infrared but neutral density filters must be used to reduce the camera’s sensitivity and the long exposure times mean that care must be taken to avoid camera-shake artifacts.

Fuji have produced digital cameras for use in forensic criminology and medicine which have no infrared blocking filter. The first camera, designated the S3 PRO UVIR, also had extended ultraviolet sensitivity (digital sensors are usually less sensitive to UV than to IR). Optimum UV sensitivity requires special lenses, but ordinary lenses usually work well for IR. In 2007, FujiFilm introduced a new version of this camera, based on the Nikon D200/ FujiFilm S5 called the IS Pro, also able to take Nikon lenses. Fuji had earlier introduced a non-SLR infrared camera, the IS-1, a modified version of the FujiFilm FinePix S9100. Unlike the S3 PRO UVIR, the IS-1 does not offer UV sensitivity. FujiFilm restricts the sale of these cameras to professional users with their EULA specifically prohibiting "unethical photographic conduct".

Phase One digital camera backs can be ordered in an infrared modified form.

Remote sensing and thermographic cameras are sensitive to longer wavelengths of infrared (see Infrared spectrum#Commonly used sub-division scheme). They may be multispectral and use a variety of technologies which may not resemble common camera or filter designs. Cameras sensitive to longer infrared wavelengths including those used in infrared astronomy often require cooling to reduce thermally induced dark currents in the sensor (see Dark current (physics)). Lower cost uncooled thermographic digital cameras operate in the Long Wave infrared band (see Thermographic camera#Uncooled infrared detectors). These cameras are generally used for building inspection or preventative maintenance but can be used for artistic pursuits as well.

en.wikipedia.org/wiki/Infrared_photography

2,500 used cars which qualify for full loans sold – 14Apr2013

SINGAPORE: The Singapore Vehicle Traders Association estimates that 2,500 used cars qualifying for full loans have been sold so far.

About a week ago, Singapore’s Monetary Authority (MAS) lifted borrowing limits for second-hand vehicles in stock before February 25, when loan curbs were imposed.

In the following weekends, prospective buyers flocked to motor firms, hoping to snag a good deal.

Some 7,000 second-hand vehicles qualify for full loans, if they are purchased within a 60-day period.

MAS’ move to help used car dealers sell old stock of automobiles has been welcomed by the Singapore Vehicle Traders Association.

The association said buyers’ response has been “overwhelming”, evidenced by weekend crowds at used car showrooms.

About a week after loan restrictions were temporarily eased, the association said roughly a third of old used car stocks has been cleared.

Chicago Motors had around 30 second-hand vehicles stocked before borrowing limits of up to 60 per cent were imposed. 29 of those vehicles have been sold.

Francis Hilton, car dealer at Chicago Motors, said: “Everybody come in, they only look for 100-per cent loans for cars – the old stock. When we trying to push this 60 per cent loan, they reject it – they walk to another shop.”

Used car dealers have had to cut prices by 10 per cent or more to get people to bite in a market of reduced demand after loan curbs were imposed.

Overall, new car dealers seem to be the hardest hit as buyers appear to be eye second-hand vehicles.

www.channelnewsasia.com/news/singapore/2-500-used-cars-which/638262.html
Video Rating: / 5

1987 Chevrolet Corvette for Sale in Canton, Ohio | Jeff’s Motorcars

1987 Chevrolet Corvette for Sale in Canton, Ohio!
Call (888) 332-8182 for more information on this vehicle.
See more cars on our website at http://www.JeffsMotorcars.com
We ship our cars worldwide!

Follow our Instagram! http://www.instagram.com/JeffsMotorcars
“Like” our Facebook page! http://www.facebook.com/JeffsMotorcars
Subscribe to see more vehicles like this!

Music: http://www.bensound.com
Video Rating: / 5